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A new method for the determination of the characteristic parameters of the stress wave propagation, 
such as attenuation coefficient, wave velocity, Young's modulus and the viscosity coefficient, at 
various frequencies in viscoelastic rods is presented. The method is based on the propagation of an 
arbitrary pulse in such a rod and the determination of the characteristic wave propagation parameters 
of each term of the Fourier series expansion of the propagating pulse. Since each term corresponds 
to a definite frequency, the characteristic properties of the wave propagation over a wide frequency 
range can be determined, by means of one test only. The analysis is based on the assumption that 
the viscoelastic material obeys a Kelvin-Voigt model. The stress pulse was created by means of a 
steel ball, projected by an air-gun, and was recorded by a transient recorder with digital memory. 
Two typical viscoelastic materials were tested, namely a poly(methyl methacrylate) (plexiglas) and a 
polycarbonate of bisphenol A (lexan). The characteristic wave propagation parameters were deter- 
mined in a frequency range between 3 and 35 kHz and the results obtained agreed satisfactorily with 
corresponding results of previous investigators. 

INTRODUCTION 

A great number of papers have been devoted to the deter- 
mination of the characteristic parameters of stress wave 
propagation, such as attenuation coefficient, wave velocity, 
Young's modulus and the viscosity coefficient in visco- 
elastic media. The determination of these quantities at 
various frequencies was obtained by using sinusoidal pulses 
usually produced by vibrators. 

Nolle ~ has determined the sound velocity and the attenu- 
ation coefficient at three temperatures by using an acoustical 
technique. Hillier and Kolsky 2 have determined the sound 
velocity along fdaments by using a longitudinal oscillation 
technique at a frequency range between 1 and 6 kHz. 
Ballow and Smith 3 have studied various physical properties 
of polymers at high, medium, and low frequencies. 
Protzman 4, by using an optical method, has determined the 
sound velocity in plexiglas as a function of temperature, in 
the frequency range between 3 and 11 MHz. The sound 
velocity for the same frequency range was also determined 
by Melchor and Petrauskas s, by using a pulse-ultrasonic 
beam method. The same investigators have also determined 
the attenuation coefficient in plexiglas at frequencies of 0.5, 
1.0 and 2.0 MHz. 

Kolsky 6 has also studied the propagation of short 
mechanical pulses along rods. The pulses were produced by 
detonating small quantities of explosive at the one end of 
the rod. Kolsky employed a condenser microphone to 
record the displacement of the opposite end. By using the 
values of the dynamic elastic constants of the materials, 
determined from measurements with sinusoidally applied 
stresses over a wide frequency range, Kolsky has predicted 
the pulse shape, by means of a numerical Fourier synthesis. 
By comparing the thus derived pulse shape with its corres- 

ponding experimental form, he has concluded that both 
types of pulses are almost identical in shape. Also, by 
assuming that the damping of the material is not high and 
that it remains constant over a wide frequency range, Kolsky 
represented the pulse shape in a universal manner for all 
high polymers and for all travelling distances. Sutton 7 has 
studied the strain waves caused by cavitation and computed 
the wave velocity, the attenuation coefficient and Young's 
modulus of the respective material. Norris a has used a 
Hopkinson bar to investigate the attenuation coefficient 
and the propagation velocity of a stress pulse. Felix 9 deter- 
mined the attenuation coefficient and the wave propagation 
velocity in plexiglas in the frequency range between 1 and 
10 MHz. Goodbread e t  al. 1o have studied the velocity of 
axial waves in plexiglas in the frequency range between 100 
and 300 kHz, by using a interferometric method. Hatfield 11 
has studied the velocity and the attenuation coefficient in 
plexiglas for frequencies 350-750 kHz. Young's modulus 
of the same material was determined at low frequencies by 
Koppelman 12 and at medium frequencies in plexiglas and 
lexan by Theocaris and coworkers 13. 

In all the above-mentioned papers it was found that the 
attenuation coefficient, Young's modulus and the wave 
propagation velocity increase with the frequency of the wave 
In the present paper a new method for the determination of 
the characteristic parameters of the stress-wave propagation 
at various frequencies in viscoelastic media was developed, 
whereby only one test is executed and all the necessary infor- 
mation needed for the determination of the parameters of 
the material is extracted when the specimen is under the 
same loading conditions. The method was applied to two 
typical viscoelastic materials, plexiglas and lexan. The 
results obtained compared favourably with existing results 
of other investigators. 
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DEVELOPMENT OF THE METHOD 

Let us consider a one-dimensional stress wave, propagating 
along a viscoelastic rod, whose diameter is assumed to be 
small compared with its length. If the viscoelastic material 
is considered to behave at any frequency as a Kelvin-Voigt 
solid, the stress-strain relationship will be expressed byl4: 

d e  
o =E ' e  + ~/~-~ (1) 

where o is the applied stress, e the corresponding strain, E '  
Young's modulus, r/the viscosity coefficient and t the time. 
If we consider that the strain e varies harmonically with 
time, i.e. if: 

where a is the attenuation coefficient and c is the wave 
velocity. These quantities are expressed bya: 

50 
a = - tan6 (11) 

C 

c :  - 1  
(12) 

From relations (4), (1 1) and (12) it is concluded that the 
viscosity coefficient 77 is given by: 

2ace ' 
rl - ~2  _ a2c 2 (13) 

e = e 0 exp (i6ot) (2) 

where e 0 is the strain corresponding to t = 0 and 6o is the 
circular frequency, then relation (1) takes the form: 

o = (E' + i~r~)e (3) 

The quantity: 

E* = E'  + iw~? = E'  + iE" (4) 

connecting the stress with the strain is the complex Young's 
modulus and the quantities E '  and E" the storage and loss 
moduli respectively. Quantities E '  and E" may, therefore, 
assume the form: 

E '  = E* cos 6 

E" = E* sin6 (5) 

From relations (1 1) to (13) it is shown that, if the quan- 
tities a and c at a given frequency are known, we can com- 
pute Young's modulus and the viscosity coefficient at this 
frequency. 

Let a periodic pulse f(t), imposed on the viscoelastic rod, 
be considered. By expanding the function f( t)  into a Fourier 
series we obtain: 

f ( t )  = ~  + ~ (AkCoSkt + Bks ink t )  (14) 
k=l 

where 

2f A o = - f ( t )dt  
7f 

o 

where the quantity: 

Elf  

tan 6 - (6) 
E '  

/r 

2 I A k = - .f(t) cos ktdt  

0 

( k = 0 ,  1,2 . . . .  ) 

is the loss factor of the viscoelastic material. 
The propagation of the one-dimensional stress wave in the 

rod is governed by the following differential equation: 

aEu aa 
- ( 7 )  

P at 2 ax 

11" 

2f B k = - f ( t )  sin ktdt  
7t 

o 

Equation (14) may assume the form: 

(15) 

where u is the displacement along the axis x of the rod and 
p the density of the rod material. 

By taking into account equations (3), (4) and the fact that: 

oa 

f(t)  = C O + ~ Ckcos(kt  - ~o k) (16) 
k=l 

a u  

e - (8) 
ax 

equation (7) assumes the form: 

where 

A0 
C° = T '  

Bk 
Ck=(A2  + B2) 1/2, tango k - (17) 

Ak 

a2u a2u 
p ~ = (E' * /E")  - -  (9) 

ax 2 

The solution of equation (9) can be expressed in the 
form: 

By taking the first m terms of equation (1 6) we obtain: 

m 

f ( t )  = C O + ~ C k cos (kt - ¢k) (1 8) 
k=l 

u = u 0 exp ( -ax )  exp {ko [t - (x/c)]} (10) The stress pulse f(t), applied to the rod, can be recorded in 
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subsequent pulses and for a strain detector bonded at the 
mid-point of the rod, is equal to twice the half-length i.e. 
the length of the rod, it is valid that: 

the memory of an oscillograph, and, consequently all the 
above coefficients Ck and ~ok.ean be determined. Now, let 
two different pulses be considered for example the original 
compressive pulse and the returning tensile pulse, after 
reflection of the previous one at the free end of the rod, and 
let Ck and C~ be the Fourier coefficients of the respective 
harmonics of the same order in these pulses. Then, if x is 
the distance travelled between the two pulses, which, for 

q 
- -  = exp ( -ax )  (19) 
ck 

Also, we have: 

B 

Pressure Trigger L o s e r ~  ~ 
g a u g e ~  valve ] "  I \ / \ / 

~ " ~  / Air gun Lq=# \/ \/ 
/ 4-I~3 

pressu,e o'r3 II Trigger ] 
I \ / Ilcircuit ~__11 r - - - - - t ~ +  
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I I -', I-Recorder 
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Figure I Diagram of the experimental arrangement 

c n _ A¢ 
- - -  1 + -  (20) 
e 0 27r 

where Cn and c o are the velocities of the nth harmonic and 
the original pulse respectively and A@ the phase difference 
between the nth harmonics of the two pulses considered. 

As the quantities Ck, C~ and x, A@ and c o can be deter- 
mined experimentally, relations (19) and (20) enable the 
determination of the attenuation factor a and the velocity 
Cn at the frequency of the corresponding harmonic. Since 
in the Fourier analysis of the pulses f(t) and f ( t ) ,  a large 
number of harmonics is contained, the quantities a and Cn 
at all corresponding frequencies can be tletermined. By 
knowing a and Cn, relations (11) to (13) enable the calcula- 
tion of Young's modulus and of the viscosity coefficient. 
Thus, all these quantities can be determined over a wide 
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Figure 2 Typical oscillographs of the applied stress pulses for plexigles (a) and lexan (b) with ema x = 0.45 and 0.58%, respectively. Photocell 
output corresponding to sphere velocities 18 m/sec (c) and 38 m/sec (d) 
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frequency range, by using only two different arbitrary pulses, 
corresponding to different harmonics of the same impact. 

EXPERIMENTAL 

Plexiglas and lexan rods of a cross-section 1.0 x 1.0 cm 2 and 
45 cm long were employed. The specimens were suspended 
at a horizontal position by means of thin strings and were 
impacted axially by a steel sphere of 1 cm diameter, pro- 
jeered from an air-gun (Figure 1). Three sphere velocities, 
selected by means of the pressure regulator of  the air-gun, 
were used, namely 18.0, 22.0 and 38.0 m/see. The air-gun 
was appropriately aligned to ensure an accurately axial 
impact of the specimen and it was triggered by a quick- 
action electromagnetic valve, so that the acceleration of the 
sphere in the gun was always constant. 

The sphere velocity was accurately determined by measur- 
ing the time required by the sphere to run a distance of 
d = 30 mm between two parallel laser light beams, obtained 
from a gas laser by means of a beam splitter. A photocell 
with the respective circuitry was attached to either beam, 
and, as the beams were interrupted by the passing sphere, 
two pulses were fed into a storage oscilloscope. The exact 
time distance between the two pulses could then be accu- 
rately measured. The first pulse also triggered the 
oscilloscope. 

The recording of the strain, produced by the stress pulse, 
was obtained by means of two strain gauges, 3.5 mm long, 
bonded at the mid-point of the rod on opposite sides, in 
order that the effect of flexure be counterbalanced. The 
gauge-length was much smaller than the length of the stress 
pulse, thus permitting a reliable recording of the impulse 
load. In order to avoid local heating of the strain gauges, 
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due to the prolonged effect of the 50 mA electric current 
passing through them, and a potential destruction of the 
cement used, the voltage was applied only during the mea- 
surements through a special switch. 

The output of the strain-gauge circuitry was recorded 
on a transient recorder with digital memory, which was 
triggered at the moment of the impact. 

The oscilloscope was triggered by means of two wires, 
placed in front of the specimen, brought into contact by 
the impacting sphere. The transient recorder stored the 
strain wave-form in digital form and fed it at normal speed 
into a strip-chart recorder, through a digital-to-analogue 
converter. By the impact, a compressive pulse was created 
in the specimen, which, reflected at the free end, was 
returning as a tensile pulse. This tensile pulse was again 
reflected at the opposite end of the rod as a compressive 
pulse etc. These subsequent compressive and tensile pulses 
earl be assumed as one-dimensional since the cross-section 
of the rod was taken to be small in comparison to the 
lengths of the pulses. 

Figures 2a and 2b present typical stress-pulse recordings 
for a maximum strain e = 0.45 and 0.58% respectively. 
Figure 2a refers to a plexiglas rod and for a sphere velocity 
of 18 m/sec, while Figure 2b refers to a lexan rod and for 
a sphere velocity of 38 m/see. 

RESULTS 

The pulse recordings of Figures 2a and 2b were analysed by 
a Fourier-series expansion and the coefficients Ck of the 
series were calculated. Figure 3 presents the variation of 
the ratio Ck/C 1 of the coefficients of the f'wst six harmonics 
in the Fourier analysis of the applied pulse for plexiglas 
and lexan, respectively. The frequencies of the basic har- 
monics were found from the corresponding frequencies of 
the pulse propagation and they were equal to 4.8 kHz for 
plexigias and 3.3 kHz for lexan, respectively. The velocity 
of the pulse is calculated by measuring the time n~luired 
for the pulse to propagate along the rod. This velocity was 
found equal to 2170 and 1485 n~sec for plexigtm and 
lexan, respectively. 

From relations (19) and (20) the attenuation coefficient 
a and the wave propagation velocity c at each particular fre- 
quency, corresponding to the terms of the Fourier series 
of the pulse, were calculated. F'~a,e 4 presents the varia- 
tion of these quantities, plotted against frequency, for 
plexiglas and lexan. By knowing the quantities a and c and 
by using rdations (11) through (13), Young'$ modulus 
IE*I and the visctnity coefficient ~ were calculated. The 
variations of IE*I and 1"/plotted against frequency for 
plexiglas and lexan, are presented in Figure 5. 

Finally, Figure 6 presents the variation of  the attenua- 
tion coefficient and Young's modulus with frequency in the 
range between 10 -3 and 105 kHz for plexiglas, as these 
quantities were given in refs 4, 5, 9, 1 ! -13.  In the same 
Figure, the results of the present investigation, correspond- 
hag to a frequency range between 3 and 35 kHz are also 
plotted. It can be seen that these results compare favour- 
ably with the results of other investigators. 

CONCLUSIONS 

In the present investigation an experimental method was 
developed for the determination of the characteristic quan- 
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teristic quantities of the wave propagation at the frequen- 
cies corresponding to each term of the Fourier expansion 
were determined. 

The method was applied to two typical viscoelastic 
materials, namely plexiglas and lexan, and the propagation 
velocity c, the attenuation coefficient a, the Young modulus 
IE*I and the viscosity coefficient 7? were determined as 
functions of frequency in the frequency range between 3 
and 35 kHz. It was concluded that the quantifies a, c and 
IE*I increase with frequency, while the viscosity coefficient 
r/decreases. It was also deduced that for the frequency 
range between 3 and 35 kHz the loss factor tan 8 was prac- 
tically independent of frequency and equal to 0.03 and 
0.02 for plexiglas and lexan, respectively. 

tities of the wave propagation in Hopkinson's bars made of  
viscoelastic materials. The method used information from 
two arbitrary harmonics from the series of wave pulses to 
which it was analysed an arbitrary impact applied to the bar. 
The method constitutes the inverse idea of that developed 
by Kolsky 6 for the study of viscoelastic media to impact. 
Indeed, while Kolsky has determined the dynamic proper- 
ties of polymers over a wide frequency range, by using stress 
pulses with different frequencies, and used Fourier synthe- 
sis to predict the shape of the composite pulse derived by 
this series of harmonics, in the present paper only one 
initial impact, i.e. one test, was used, which was further 
expanded to a Fourier series for the calculation of the 
dynamic properties of  the material at all harmonics con- 
tained in the applied pulse, which can be accurately 
measured. 

The coefficients of  the Fourier series of the applied 
stress pulse were determined. By this method, the charac- 
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